LWIS.net Angelia   Expert of Satellite Broadband Technologies



Satellite Broadband Internet Antennas


The antenna is the most visible part of the satellite communicationon system. The antenna transmits and receives the modulated carrier signal at the radio frequency (RF) portion of the electromagnetic spectrum. For satellite communication, the frequencies range from about 0.3 GHz (VHF) to 30 GHz (Ka-band) and beyond. These frequencies represent microwaves, with wavelengths on the order of one meter down to below one centimeter. High frequencies, and the corresponding small wavelengths, permit the use of antennas having practical dimensions for commercial use.


A variety of antenna types are used in satellite communications. The most widely used narrow beam antennas are reflector antennas. The shape is generally a paraboloid of revolution.

For full earth coverage from a geostationary satellite, a horn antenna is used. Horns are also used as feeds for reflector antennas. In a direct feed reflector, such as on a satellite or a small earth terminal, the feed horn is located at the focus or may be offset to one side of the focus. Large earth station antennas have a subreflector at the focus. In the Cassegrain design, the subreflector is convex with an hyperboloidal surface, while in the Gregorian design it is concave with an ellipsoidal surface.

The subreflector permits the antenna optics to be located near the base of the antenna. This configuration reduces losses because the length of the waveguide between the transmitter or receiver and the antenna feed is reduced. The system noise temperature is also reduced because the receiver looks at the cold sky instead of the warm earth. In addition, the mechanical stability is improved, resulting in higher pointing accuracy.

Phased array antennas may be used to produce multiple beams or for electronic steering. Phased arrays are found on many nongeostationary satellites, such as the Iridium, Globalstar, and ICO satellites for mobile telephony.